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15 Abstract. Mineral dust is abundant in the atmosphere. To assess its climate impact, it is essential to obtain information on the
three-dimensional distribution of cloud condensation nucleation (CCN) and ice-nucleating particle (INP) concentrations
related to mineral dust. The POlarization LIdar PHOtometer Networking (POLIPHON) method uses aerosol-type-dependent
conversion factors to transform lidar-derived aerosol optical parameters into CCN- and INP-relevant microphysical parameters.
We present a global data set of conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET)

20 observations at 137 sites for INP and 123 sites for CCN calculations. Dust presence is identified using a column-integrated
dust ratio threshold of 80%, derived from AERONET columnar particle linear depolarization ratio at 1020 nm. INP-relevant
conversion factors (€504, Csd». and Cg100,4) exhibit distinct regional patterns, generally lower near deserts and increasing
downstream from dust sources. CCN-relevant conversion factors (c;994 and y4) display significant site-to-site variation. A
comparison of dust-related particle concentration profiles derived using both POLIPHON and the independent OMCAM

25 (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval shows that profiles generally agree within an order of
magnitude. This result is consistent with the respective retrieval uncertainties and corroborates the usefulness of lidar

observations for inferring dust-related CCN and INP concentration profiles.
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1. Introduction

30 Aerosol-cloud interactions (ACI) contribute the largest uncertainty in our current understanding of global climate change
(IPCC, 2021). To study AClIs, it is essential to link characteristic parameters of both aerosols and clouds. Parameters such as
cloud phase, cloud fraction, ice/liquid water content, and the size and number concentrations of ice crystals and liquid droplets
are typically used for estimating the climate effect of clouds (Huang et al., 2006; Rosenfeld et al., 2014). Estimates of the
climate effect of aerosols are often based on aerosol optical depth (AOD), aerosol index, or aerosol number concentration

35 (Nakajima et al., 2001; Rosenfeld, 2006; Zhao et al., 2019). A better assessment of ACI effects requires information on the
number concentration of cloud-relevant aerosol particles at cloud level, particularly of ice nucleating particles (INP) and cloud
condensation nuclei (CCN) (Kanji et al., 2017; Korolev et al., 2017).

The POLIPHON (POlarization Lldar PHOtometer Networking) method has been developed for inferring INP and CCN
number concentration profiles from ground-based lidar measurements (Mamouri and Ansmann, 2014, 2015; Mamouri et al.,

40 2016). It has also been applied to lidar observations from space (Marinou et al., 2019; Choudhury et al., 2022). This method
combines polarization lidar observations with sun photometer measurements, meteorological parameters (from reanalysis or
radiosonde data), and aerosol-type specific parameterizations to retrieve profiles of INP concentrations (INPC) and CCN
concentrations (CCNC). Therefore, the POLIPHON method holds potential for global application, ranging from individual or
multiple ground-based lidar sites (Ansmann et al., 2019a, 2019b; Haarig et al., 2019; Marinou et al., 2019; Hofer et al., 2020;

45 He et al., 2021b) to spaceborne lidar observations, such as CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization)
(Winker et al., 2009; Georgoulias et al., 2020; He et al., 2022; Shen et al., 2024) and ongoing EarthCARE mission (Wehr et
al., 2023), and ground-based lidar networks (Baars et al., 2016; Pappalardo et al., 2014).

An essential step of POLIPHON is the transformation of lidar-derived aerosol-type-specific extinction coefficients to
particle number concentrations (with particle size above a certain threshold) and particle surface area concentrations as input

50 to INP- and CCN-parameterizations with the help of related conversion factors (Ansmann et al., 2019a; He et al., 2021b, 2023).
However, for each aerosol type, conversion factors can vary from region to region due to differences in particle microphysics.
The global application of POLIPHON therefore requires spatially resolved information about these conversion factors.

Dust aerosols are of particular importance as they mark a major contributor to global INP and CCN burden (Kanji et al.,
2017; Choudhury and Tesche, 2022a; Casquero-Vera et al., 2023; Chatziparaschos et al., 2024; Herbert et al., 2025). The most

55 challenging aspect of deriving dust-related conversion factors is identifying the presence of dust in sun photometer
observations, such as in the framework of the Aerosol Robotic Network (AERONET, Holben et al., 1998; Giles et al., 2023).
So far, POLIPHON studies have used an Angstrém exponent (AE, for 440-870 nm) <0.3 and AOD at 532 nm >0.1 (Ansmann,
et al.,, 2019a) or a 1020-nm particle linear depolarization ratio >53% (He et al., 2023) for identifying dust-dominated
observations. Here we aim to extend the earlier work on dust-related conversion factors to additional AERONET sites that

60 cover most regions on Earth where local or transported dust aerosols are likely to occur.

The extended conversion-factor dataset can be applied to retrieving dust-related CCNC and INPC profiles that can be
compared to independent datasets or measurements. The uncertainties in POLIPHON-derived INPC are primarily caused by
the considered INP parameterizations (DeMott et al., 2015; Ullrich et al., 2017). Those are highly dependent on meteorological
parameters, which makes INPC comparison a very challenging task. In contrast, CCN parameterizations are much simpler

65 (Shinozuka et al., 2015) and easily applicable in a validation study. Therefore, we will compare dust-related CCNC profiles
derived from spaceborne CALIOP observations using POLIPHON with those obtained by the Optical Modelling of the
CALIPSO Aerosol Microphysics (OMCAM, Choudhury and Tesche, 2022a, 2022b, 2023a) retrieval. OMCAM assumes that
each aerosol type can be represented by a single particle size distribution (PSD). This fundamental difference to POLIPHON
provides us with a unique opportunity to examine the potential influence (sensitivity to retrieving uncertainty) of such an

70 assumption in CCNC retrievals.

The paper is organized as follows. We first introduce the POLIPHON method, the process for retrieving dust-related
2
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conversion factors, and the OMCAM algorithm. Section 3 presents the derived dataset of dust-related conversion factors. In
Section 4, we conduct a dust-related CCN profile comparison study between the POLIPHON and OMCAM methods. The

main findings of the study are summarized in Section 5.

2. Data and methodology
2.1 POLIPHON method for dust-related CCN and INP retrieval

POLIPHON was developed for deriving height-resolved aerosol-type-specific information on particle mass, INPC, and
CCNC based on measurements with polarization lidar and sun photometer (Mamouri and Ansmann, 2014, 2015; Mamouri et
al., 2016). The method is considered particularly reliable in the presence of mineral dust (Hofer et al., 2020; Ansmann et al.,

2021b; He et al., 2021b) due to the large particle linear depolarization ratio of non-spherical dust particles (Tesche et al., 2009).

Table 1. Overview of the computation of dust-related mass, INP, and CCN concentrations using the POLIPHON method based on
polarization lidar observations (Tesche et al., 2010; Ansmann et al., 2019a). The subscripts ‘p’, ‘d’, and ‘nd’ denote ‘particle’, ‘dust’,

and ‘non-dust’, respectively.

Main task Input parameter Calculation
Divide lidar-derived particle backscatter £ into dust 4 B(2), 6,(2) (6p (2) = 6p)(1 + 6d)
and non-dust fng N T W ENE)
Bqa(z), dust lidar aq(z) = LR - B4(2)
ratio
Convert into dust mass concentration, CCN- and INP- aq(z), dust- My(2) = cyq X pg X aq(z)

EGUsphere\

relevant parameters: dust number concentration n related conversion —
p 250d N250,4(2) = C2504 X @4(2)

and n , and dust particle surface area concentration factors —
100d P 5d4(2) = ¢5q X @q(2)

5100,4(2) = C51004 X @4(2)

sq and Syg0,q

log(n100,4(2)) =10g(c100,) + Xalog(aa(2))
Input parameters Nyso4, Sd» S100,d» and Nyggq into Ny50,d(2), T(2) INP parameterization D-15 (DeMott et al., 2015)
different INP and CCN parameterizations

s4(2), T(2) INP parameterization U-17d (Ulrich et al., 2017)
$100,d(2), T(2) INP parameterization U-17d (Ulrich et al., 2017)
N100,4(2) CCN parameterization: ncenda(2) = fssd X N100,a(2)

(Shinozuka et al., 2015)

The processing steps of POLIPHON are summarized in Table 1. The method starts with the retrieval of the particle
backscatter coefficient B, from lidar observations using the method of Fernald (1984). This parameter is separated into
contributions from dust and non-dust, i.e., B4 and 8,4 (Tesche et al., 2009). Next, the dust extinction coefficient ay is obtained
by multiplying B4 with a dust lidar ratio of 30-60 sr (Miiller et al., 2007; Tesche et al., 2011; Hofer et al., 2017; Floutsi et al.,
2023). The derived ag is then converted into

e the concentration of particles with radii larger than 100 nm (n,40,4) for the CCN retrieval,

e the concentration of particles with radii larger than 250 nm (n,50,4) for the INP retrieval, and

o the surface area concentration s4 and sy 4 for the INP retrieval
with the help of the corresponding conversion factors, i.€., C190,d> Xd» C250,d> Cs,d> a0d Cg 100, (Mamouri et al., 2016; Ansmann
etal., 2019a). It should be noted that, for retrieving the CCN-relevant parameter 1y 4, a log-log regression analysis is applied,
in which the conversion factor ¢4 and regression coefficient y4 are determined (Shinozuka et al., 2015). Finally, 1,504, Sq.
and s;9g,q are used as input for various dust INP parameterization schemes (DeMott et al., 2015; Ulrich et al., 2017) to derive
the dust-related INP profile njyp q(2). n1904 is used to obtain the dust-related CCN profile nccy,q(2) following Shinozuka et
al. (2015) as:

neend(2) = fosa X Nago,a(2) (@Y}
3
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100 where fs 4 is the water supersaturation-dependent factor, with values of 1.00, 1.35, and 1.70 for supersaturations of 0.15-
0.20%, 0.25%, and 0.40%, respectively. Note that for retrieving CCN and INP, 11550 4, Sq, and 1590 4 under dry conditions are
needed. Here dust is considered hydrophobic so an additional correction is not necessary (Mamouri et al., 2016).

In addition, from the dust extinction coefficient, we can also derive the dust mass concentration profile M4(z) by using the
extinction-to-volume conversion factor c, 4 and an assumed dust density pgq with the following equation (Jing et al., 2024):

105 My(z) = pg X @q(2z) X cyq 2
We assume pq to be 2.6 g cm™ (Ansmann et al., 2019a). The parameters c, 4 and pg together determine the so-called mass
extinction efficiency (Wang et al., 2021). Detailed computational procedures, associated equations, and uncertainty analyses

are provided in Mamouri and Ansmann (2015) and Ansmann et al. (2019a).

2.2 Conversion factors derived from AERONET dataset

110 The conversion factors in the POLIPHON method are dependent on both aerosol type and geographic region (Ansmann et
al., 2019a). In this section, we describe the retrieval of ¢y 4, C100,d> Xd» C250,d> and Cg 4. To ensure consistency with Ansmann et
al. (2019a), we also present the conversion factor cg 1994 for calculating the surface area concentration of dust particles with
radii larger than 100 nm. These conversion factors are derived from AERONET measurements of AOD at eight wavelengths
(i.e., 340, 380, 440, 500, 675, 870, 1020, and 1064 nm) (Holben et al., 1998; Giles et al., 2019) and the particle size distributions

115 provided in the aerosol inversion data product (Sinyuk et al., 2020) as illustrated in Figure 1. The first step is identifying the
presence of dust in an observation. We use the columnar particle linear depolarization ratio (PLDR) at 1020 nm afOZOnm from
the AERONET inversion product for identifying dust data points (Noh et al., 2017; Shin et al., 2018, 2019; He et al., 2023).
Due to the spheroid particle assumption in the AERONET algorithm, PLDR at the near-infrared wavelength may show some
overestimations as compared with polarization lidar observations (Toledano et al., 2019; Haarig et al., 2022). Nevertheless, its

120  polarization sensitivity is sufficient for identifying nonspherical particles. Dust is the primary nonspherical particle in the
atmosphere; thus, we consider other potential types of nonspherical aerosols, such as fresh smoke, volcanic ash, and pollen as
secondary.

We calculate the column-integrated dust ratio R4 1020nm following Shin et al. (2019):

R _ (5f020nm — ‘ﬁd)(l + 5};)
d,1020nm — (6(}; — §pd)(1 + 6p
n

1020nm

3)

125 where the dust 65 and non-dust 5501 PLDR values are set to 0.30 and 0.02, respectively. For reference, lidar observations of
the PLDR of pure dust range between 0.30 and 0.35 (Freudenthaler et al., 2009; Floutsi et al., 2023). In this extended study,
we use Rg1020nm = 80% as a criterion for identifying the ‘dust-presence’ data points, which are subsequently used to calculate
the conversion factors for dust aerosols. This marks a compromise between the identification of pure dust cases with 0.89 <
R4 1020nm < 1, which potentially may be too strict, and the inclusion of a large amount of non-dust aerosols for dust-dominated

130 mixtures with 0.53 < Ry 1020nm < 0.89.

For each identified data-presence data point (from number j = 1 to /4), we can obtain the dust-related conversion factors
(Cyd» C250d> Cs,a and Cs1004) using the particle size distribution and AOD data, following equations (6) and (9)-(11) in
Ansmann et al. (2019a). The 532-nm AOD is converted from 500-nm AOD by using the Angstrém exponent between 440 and

870 nm, respectively. To retrieve c;90,4 and x4, we apply the regression analysis below (also given in Table 1):

135 log (nIOO,d(Z)) =log(cy004) + xalog(aa(2)) “)
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Figure 1. Flow chart of calculating the dust-related POLIPHON conversion factors based on the AERONET measurements,

including the Version 3 Level-1.5 or -2.0 aerosol inversion product (corresponding to the finally obtained Level-1.5 or -2.0 conversion

factor dataset, respectively) (Sinyuk et al., 2020; AERONET, 2023b) and Level-2.0 AOD product (Giles et al., 2019; AERONET,
140 2022a). The selection scheme of dust-containing data points refers to Shin et al. (2018, 2019).

Figure 2 shows the AERONET sites selected for retrieving the dust-related conversion factors in this study. We only include
AERONET sites with valid data spanning observations of more than two years before October 2022 (AERONET, 2023a,
2023b). In total, 198 AERONET sites are included, geographically covering most desert regions and the major transport
pathways of dust plumes (Hu et al., 2019; Mona et al., 2023). The origin of dust particles at each site can be quite variable. In

145 the tropic and mid-latitude of the Northern Hemisphere, a majority of dust particles generally appears along the dust belt that
spans the Saharan Desert, Middle East deserts, Asian deserts (mainly the Taklimakan Desert and Gobi Desert), and their
downstream regions (Hofer et al., 2017). The high-latitude dust of the Northern Hemisphere can be contributed by high-latitude
local Aeolian dust origins (Bullard et al., 2016) as well as south-to-north meridional transport originating from Asian and
African deserts (Shi et al., 2022). In the Southern Hemisphere, there are major dust sources including the Patagonian Desert

150 in South America, Australia's deserts, and the Kalahari Desert in Southern Africa. In addition, anthropogenic dust from

agriculture, transportation, or construction, can also play a significant role (Chen et al., 2023).
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Figure 2. Overview of AERONET sites used for inferring dust-related POLIPHON conversion factors. The orange crosses show the
locations of near-desert, oceanic, and coastal sites in He et al. (2023). The solid circles in different colors indicate the locations of 198

155 AERONET sites in North America (dark red), South America (red), Africa (modena), Europe (blue), North and East Asia (lilac),
South and West Asia (magenta), and Australia (green).
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2.3 OMCAM algorithm for retrieving CCN concentration

Choudhury and Tesche (2022a) developed the OMCAM algorithm to derive global, height-resolved aerosol-type-specific
CCNC from spaceborne CALIPSO (Winker et al., 2009) lidar observations. To calculate dust-related CCNC, they obtain dust-
160  related backscatter and extinction coefficients from three aerosol mixtures in the CALIOP level-2 aerosol profile product,
namely mineral dust, polluted dust, and dusty marine, following Tesche et al. (2009). The CALIPSO aerosol model provides
microphysical properties of each aerosol type included in the retrieval (Omar et al., 2009). It provides a dust-specific
normalized volume size distribution (Vg pnormalizea) and refractive index which is used to obtain the corresponding dust
extinction coefficient at 532 nm (@4 normalizea)» through light-scattering calculations (Gasteiger and Wiegner, 2018). The ratio
165 Vi of the CALIOP-measured dust extinction @qmeasured aNd @4 normalized 15 Used to scale the normalized volume size

distribution to obtain:
Va,scaled = Vi X Vanormalized &)
This scaled size distribution Vg scqjeq is the one that best reproduces the dust extinction coefficient provided in the CALIPSO
aerosol profile product. Converting Vg sca1eq into a number size distribution and using Eq. (1) leads to the dust-related CCNC

170 profiles.

The instantaneous and gridded OMCAM-derived CCNC are found to be consistent with independent in-situ measurements
(Choudhury and Tesche, 2022b; Choudhury et al., 2022; Aravindhavel et al., 2023) and reanalysis results (Choudhury et al.,
2025). They are also used for studying aerosol-cloud interactions for warm and cold clouds based on spaceborne observations
(Alexandri et al., 2024). Choudhury and Tesche (2023a) applied the OMCAM algorithm to generate the first global 3-D CCNC
175 dataset using more than 15 years of CALIOP Level-2 aerosol profile products. This CCNC dataset includes five aerosol
subtypes, i.e., marine, dust, polluted continental, clean continental, and elevated smoke. It is available at a uniform latitude-

longitude grid of 2°x5° with a temporal resolution of one month.

2.4 Scheme of comparing dust CCNC from POLIPHON and OMCAM

There are several algorithms for retrieving CCNC profiles from lidar observations that all hinge on the assumed parameters

180 of the PSD. Those methods are generally based on multiwavelength lidar data and might consult look-up tables (Lv et al.,
2018; Zhou et al., 2024), in-situ measurements (Tan et al., 2019), or machine learning (Redeman and Gao, 2024) to convert
optical data to microphysical parameters and offer the advantage of considering realistic and variable PSD estimates (Miiller
et al., 2014). However, the instrumental complexity required to obtain the data used in the abovementioned methods has so far
ruled out spaceborne application.

185 OMCAM has been designed for retrieving aerosol-type-specific CCNC from spaceborne lidar observations. POLIPHON
has initially been developed for retrieving aerosol-type-specific CCNC and INPC based on ground-based lidar observations,
and has subsequently been extended to spaceborne applications (Marinou et al., 2019). Therefore, a key difference between
the OMCAM and POLIPHON methods is that OMCAM only employs a fixed shape of aerosol-type-specific PSD from
CALIPSO’s aerosol model, whereas POLIPHON considers the use of regionally varying aerosol-type-specific PSDs (i.e.,

190 conversion factors that are calculated from PSDs). In particular, regional variations in dust PSD mainly result from the
deposition of dust particles during their long-range transport (Ansmann et al., 2017; Rittmeister et al., 2017). Coarse dust
particles generally deposit prior to fine dust particles within the plume along the transport pathway from their dust sources
(Ratcliffe et al., 2024), which causes variations in dust PSD. By comparing dust CCNC results obtained from these two
methods, this study also provides an opportunity to evaluate whether employing a fixed dust PSD is sufficient for deriving the

195 global dust CCNC distribution or whether regionally dependent dust PSDs are necessary (Adebiyi et al., 2023).

In this study, the monthly dust-related CCNC profiles obtained via POLIPHON and from the OMCAM climatology

6
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(Choudhury and Tesche, 2023b) are compared for selected AERONET sites. For consistency, both methods consider monthly
dust-specific extinction coefficient profiles from the CALIOP Level 2 profile product for inferring CCNC in grid boxes closest
to the considered AERONET stations. First, the CALIOP Version 4.20 Level-2 aerosol profile product (Omar et al., 2009)
undergoes several data quality control procedures, as listed in Section 3.1.1 of Choudhury and Tesche (2023a). Next, we
separate dust backscatter coefficient profiles from the aerosol subtypes of dust, polluted dust, and dusty marine using the
method of Tesche et al. (2009). These dust backscatter coefficient profiles, combined with an assumed dust lidar ratio of 44 sr
(Kim et al., 2018), are then used to form a global gridded (latitude: 2°, longitude: 5°) monthly-average dust extinction
coefficient dataset, with a vertical resolution of 60 m from the surface to an altitude of 8 km. This 3-D global dust extinction
dataset, derived from the CALIOP data spanning June 2006 to December 2021 (except for February 2016 due to the

unavailability of CALIOP data), serves as inputs for retrieving dust-related CCNC implementing with both the POLIPHON
and OMCAM methods.

3. Global distribution of dust-related conversion factors

Figure 3 presents dust-related conversion factors at four (out of 198) typical city sites, i.e., Beijing (China), KAUST Campus
(Saudi Arabia), La_Parguera (Puerto Rico), and Granada (Spain). Note that we use the formal site names defined by AERONET.
The large difference in the number of dust-presence data points is due to both the duration of sun photometer observations and
the frequency and extent of dust intrusions. The local atmospheric environment varies from site to site, as indicated by the
averaged 532-nm AODs of 0.438, 0.374, 0.130, and 0.132 for Beijing, KAUST Campus, La Parguera, and Granada,
respectively. Beijing shows larger ¢, 4 and smaller ¢,50 4 compared to the other sites, which is probably due to the influence

of more local pollutants (usually smaller size with larger concentration). This is discussed further below.

S100¢ (10° M2 m?)

Nase g (10° cm)
5 (10°m® m®)

a) Beijing

b) KAUST_Campus

(c) La_Parguera

d) Granada

T
C2504=0.15(+/-0.03)Mm cm

€,,=0.77(+/-0.16)x10""Mm m*m
N=545

1
Cp504=0.18 0.03)
©,4=0.61(+/-0.08)x10°™2
N=5294

T
C604=0.20(+/-0.02

"] c..~0.60(+-0.08)x10"2

N=2005

[ =0.18 3)
¢, =0.61(+/-0.07)x10™
-J n=2670

(e) Beijing

(f) KAUST_Campus

(g) La_Parguera

(h) Granada

T T
Cq 1 2.04(+/-0.32)x10 “Mm m°cm

N
T

sS4 (10 m? m?)

C,4=2.82(+/-0.73)x10"* Mm m’cm?®

1
C, =2.01(+/-0.29)x10
¢, =2.66(+/-0.58)x10"?

T
J ¢ 1004=180(+/-0.20)x10

C,4=2.41(+/-0.63)x10""2

¢, =3.23(+/-0.82)x10"?

T
[ 2.15(+/-0.94)x10™

800 O

400

800 0

400

800 O 400

800

220

Aerosol extinction coefficient (Mm™)
Figure 3. Relationship between the 532-nm aerosol extinction coefficient and particle (radius >250 nm) number concentration n;5 4,
volume concentration v4, and surface area concentration sq and 51994 (radius >100 nm) for dust-presence data points (number
denoted by N) at four typical city sites, i.e., (a) and (e) for Beijing (39.98°N, 116.38°E), (b) and (f) for KAUST_Campus (22.30°N,
39.10°E), (¢) and (g) for La_Parguera (17.97°N, 67.05°W), and (d) and (h) for Granada (37.16°N, 3.61°W). The corresponding dust-

related conversion factors are provided in the corresponding panels.

Figure 4 presents the global distribution of dust-related mass concentration and INP-relevant conversion factors ¢y g, €250 d»

7
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Csq and cs100,4. Only data points with aerosol extinctions exceeding 20 Mm™! are considered. For a site to be considered, it
had to show at least 15 valid dust-presence data points, which applies to 137 out of the 198 selected AERONET sites. The
regional variation of the conversion factors reflects the distinct microphysical properties of dust along its transport pathways
and the varying impact of mixing with other aerosol types (Philip et al., 2017). Moreover, dust from different deserts may
exhibit different microphysical properties. Particularly changes in the dust PSD contribute to the regional variation of
conversion factors.

As shown in Figure 4a, the extinction-to-volume conversion factor ¢, 4 ranges from 0.4x10'*to 0.8x10"'> Mm-m*-m™ over
the dust belt region of the Northern Hemisphere (e.g., North Africa, the Middle East, and Central Asia) as well as the major
downstream regions of dust transport (Europe, East Asia, and Western America). In addition, similar c,4 values are also
obtained in some Australian sites impacted by local desert dust. Values of ¢, 4 generally decrease along the routes of dust
transport due to the removal of dust particles by gravitation settling and cloud processing as well as the mixing with other,
usually smaller and more spherical aerosols. This is consistent with the dust-related conversion factors found at Lanzhou near
the deserts in East Asia and Wuhan far away from deserts (He et al., 2021b). Kai et al. (2023) observed a decreasing trend in
the dust mass-extinction conversion factor along the transport pathway of dust aerosols originating from the Gobi Desert,
which suggests an equivalent decreasing trend in c, 4, if assuming a fixed dust density. The larger geographical coverage of
the data set presented here provides valuable information for global dust models in which mass extinction efficiency is a key
parameter (Adebiyi et al., 2020; Han et al., 2022). In contrast, Figure 4b shows that c,50 4 near desert regions are relatively
lower compared to polluted regions downstream of deserts. Notably, a gradual increase in ¢,50, 4 is evident when following the
meridional transport of dust from North Africa to Northern Europe, corresponding to the typical northward transport pathway
of Saharan dust. Generally, ¢s 4 and ¢5 1994 Show slightly higher values at the sites far from desert regions. Moreover, these

two factors are more sensitive to the presence of other aerosols (He et al., 2023), which may explain the larger site-to-site

EGUsphere

variation.
b) Cpsg.g (MM cm™®
1.00 90 8] S0 (Mm ) r T 0.50
0.80 g 0.24
0.70 60 2 0.22
= 065 = 0.21
£ 0s0 & 80p | 0.20
® 0.55 ® 0.19
3 0.50 s U 0.18
£ 045 = gk 0.17
S 040§ SOF i 0.16
0.35 60F . ] 0.15
0.30 r 0.10
0.00 -90 L L 1 1 L 0.00
d) c, 10> Mm m? cm®
ig 90( ) (ODd( r T )I T 4.0
40 60F i
= 35 =
£ 3.0 £ 30
[0} 28 ) 0
g 2 8
= 25 s
S 24 s -80f
22 60
-90 == 1 1 1 1 (2)8 -90
-180 -120 -60 0 60 120 180 -180 -120 -60 0 60 120 180

Longitude (°E)

Longitude (°E)

Figure 4. POLIPHON dust-related conversion factors ¢y 4, €250,d, €s,a and Cs 190,4 Obtained from dust data points (Rq1920nm = 80%)

at 137 AERONET sites.

Figure 5 shows the derived CCN-relevant conversion factors c1994 and x4 at four typical city sites, i.e., the same as those
in Figure 3. Note that only data points with aerosol extinctions between 20 Mm™ and 600 Mm™! are considered in the
calculations. The correlations at Beijing, Granada, and La_Parguera are generally strong; however, at KAUST Campus, the

data points tend to be scattered as the aerosol extinction coefficient increases, indicating a growing influence of local non-dust
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particles, e.g. anthropogenic pollutants.
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Figure 5. Relationship between aerosol extinction coefficient at 532 nm and aerosol particle number concentration nyg9g4
255 (radius >100 nm) for dust-presence data points at the same sites as Figure 3. The corresponding dust-related conversion factors

€100, and x4 are provided.

Figure 6 presents the distribution of worldwide c;49,4 and x4 values. When applying the regression analysis, Ansmann et al.

(2019a) found that the relationship becomes much weaker when the 532-nm AOD exceeds 0.6 (i.e., extinction coefficient >600

Mm™). For each site, the conversion factors are considered only if at least 15 valid dust-presence data points are available;

260 meanwhile, only results with the regression coefficient y4 ranging from 0.5 to 1.2 are included since the data points are much
more dispersive in case Y4 is outside of this range of values. As a result, 123 out of the 198 selected AERONET sites have

valid conversion factors. No identifiable regional variation pattern is observed for c;9 4 and x4, indicating that these factors

are more sensitive to the contribution of local fine-mode particles. This suggests that to derive dust-related CCNC, it is crucial

to use region-specific conversion factors rather than relying on a global average, which is consistent with the results given by

265 Ansmann et al. (2019a).
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Figure 6. POLIPHON dust-related conversion factor ¢, 4 and associated regression coefficient y4 obtained from dust data points

(Rg1020nm = 80%) at 123 AERONET sites.

The conversion factors presented in Figures 4 and 6 can be accessed at https://doi.org/10.5281/zenodo.15281078 (He, 2025).

270 Note that a conversion factor is provided only when the corresponding number of identified dust-presence data points exceeds

15. Considering the use of dust-dominant mixture (with a columnar dust ratio Rq 1020nm = 80%) in the calculation, traces of

9
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local non-dust components (e.g., anthropogenic pollutants) may be included. Therefore, a larger dust-presence data point
number and a smaller standard deviation indicate that the corresponding conversion factors more closely represent the local
dust properties. Note that the results from the dust belt region of the Northern Hemisphere are considered more reliable (Hofer
275 etal., 2017), as they typically involve over 1000 dust-presence data points. In contrast, the results from downwind sites located
in more remote regions of dust transport, such as North and South America, likely reflect occasional dust intrusion events
(long-range transport), meaning that the derived conversion factors may not be representative from a statistical point of view,
and thus, we recommend further validations by in-situ measurements. We have also endeavored to compile a gridded dust
conversion-factor dataset for expedient future use in studying global ACI using gridded spaceborne lidar datasets. However,
280  this has proven challenging due to the limited number of available sites in comparison to global coverage and their
inhomogeneous geographical distribution. Therefore, when applying this conversion factor dataset, we recommend selecting

values from the nearest available site.

4. Comparing dust-related CCN concentrations from POLIPHON and OMCAM

We verify the extended conversion-factor dataset by comparing the obtained dust-related CCNC profiles with OMCAM-

285 derived CCN data (Choudhury and Tesche, 2022a, 2023a) for 12 AERONET sites. The sites were selected to provide a wide
geographical spread and to cover the range of y4 from 0.7 to 1.1. Table 2 gives an overview of those sites and the inferred
parameters. More details can be found in the dataset (He, 2025). The CCNC values from geographical grids containing the
selected AERONET sites are extracted for comparison. It should be noted that dust particles are typically hydrophobic;

however, they may undergo aging processes during their transport, which may change their surface properties and make them

290 capable of acting as CCNs.
Table 2. Overview of the AERONET sites used for comparing the dust-related CCNC from POLIPHON and OMCAM. The total
number of data points for each site is derived from the AERONET Level-1.5 aerosol inversion product.
C100,d Dust-presence
AERONET site name City name Location (cm™ for Xd / total data
ag=1 Mm) point number
North La_Parguera La Parguera, Puerto Rico 17.97°N, 67.05°W 1.68 0.81 2005/12068
America Fresno_2 Fresno, USA 36.79°N, 119.77°W 3.21 0.84 149/105535
South CEILAP-BA Buenos Aires, Argentina 34.56°S, 58.51°W 3.25 0.93 123/11433
America Trelew Trelew, Argentina 43.25°S, 65.31°W 1.41 0.81 133/9240
Cairo_EMA_2 Cairo, Egypt 30.08°N, 31.29°E 2.79 0.76 1959/11919
Africa IER_Cinzana IER-Cinzana, Mali 13.28°N, 5.93°W 2.11 0.82 10633/14269
Zinder_Airport Zinder, Niger 13.77°N, 8.99°E 3.01 0.92 7063/9867
Middle East KAUST_Campus Thuwal, Saudi Arabia 22.30°N, 39.10°E 3.27 0.90 5294/17022
East Asia Beijing Beijing, China 39.98°N, 116.38°E 3.52 1.01 545/14409
Australia Birdsville Birdsville, Australia 25.90°S, 139.35°E 2.34 1.05 371/11569
Granada Granada, Spain 37.16°N, 3.61°W 2.76 0.70 2670/20983
Furope Palma_de_Mallorca Palma de Mallorca, Spain 39.55°N, 2.63°E 3.59 0.85 1207/11652
Figure 7 presents the average dust-related CCNC profiles at a supersaturation of 0.2% with respect to liquid water from the
295 POLIPHON and OMCAM methods, respectively, at the 12 sites listed in Table 2. CCNC values from OMCAM are generally

larger than those from POLIPHON with a difference of less than one order of magnitude. The overall uncertainty in OMCAM-
derived CCNC is estimated to be 200%-300% (Choudhury and Tesche, 2023a), whereas the uncertainty in POLIPHON-derived

CCNC ranges from 50% to 200% (Ansmann et al., 2019a). As a result, even differences as large as an order of magnitude can
10
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300

still be considered acceptable within the uncertainty bound, particularly for a parameter like CCNC, which can vary by more

than five orders of magnitude at a given location (Choudhury and Tesche, 2022b).
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Figure 7. Dust-related CCNC (at a water supersaturation ss=0.2%) profiles derived using POLIPHON (red) and OMCAM (blue) at
12 selected AERONET sites. Profiles represent the average from June 2006 to December 2021 and are based on monthly means.

The comparison also suggests that the globally fixed dust PSD defined by the CALIPSO aerosol model may not accurately
305 depict the dust microphysical properties at these locations. The site-average dust-related PSDs in Figure 8a highlight the
dominance of coarse-mode particles at the selected sites though significant differences in maximum concentration are visible
between sites. Figure 8b presents the normalized particle volume size distribution provided in the CALIPSO aerosol model,
which is used in OMCAM retrieval, together with the twelve-site average particle volume size distributions for different dust
identification schemes (Rg1020nm = 80% and 89%). If the dust fraction in the atmospheric column increases, the number of
310 coarse-mode dust particles rapidly increase. Differences between CCNC values from POLIPHON and OMCAM may arise
from site-to-site variations of dust microphysical properties, such as particle size distribution, refractive index, and lidar ratio
due to gravitational deposition along the dust transport pathway from dust sources (Ansmann et al., 2017; Ratcliffe et al., 2024).
Compared with the average PSDs of identified dust data (see Figure 8b), the CALIPSO aerosol model dust PSD exhibits a
similar mean radius for both the fine and coarse modes (¢ and p.). However, significant differences are observed in the volume
315 fraction of the coarse and fine mode (v¢ and v.) between the identified dust PSDs and the fixed normalized dust PSD from the
CALIPSO aerosol model. It is evident that the coarse-to-fine mode particle ratios are much higher for the identified dust data
in this study compared to those from the CALIPSO aerosol model applied in OMCAM. This implies that when using the fixed
dust PSD in OMCAM to reproduce CALIOP-derived aerosol extinction, a larger number concentration of fine-mode dust
particles is produced, leading to a higher 144 4, and thus, a higher dust CCNC value. Moreover, the varying influence of local

320 aerosols is also contributed since dust-dominant mixture data points from AERONET are applied in this study.

11
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Figure 8. (a) Dust column-integrated particle volume size distributions at the selected AERONET sites from AERONET aerosol
inversion data product identified using the columnar dust ratio Rg1920nm threshold of > 80%. (b) Average column-integrated
particle volume size distributions of the twelve selected sites with the columnar dust ratio Rg 1920nm thresholds of > 80% (in magenta)

325 and > 89%. (in cyan, as used in He et al. (2023)), and the normalized particle volume size distribution for dust from the CALIPSO
aerosol model (in blue), which is used to reproduce the CALIOP-derived dust extinctions by multiplying a scaling factor in OMCAM.
The standard deviations (a7 and o) are 1.4813 pm and 1.9078 pm for fine and coarse mode, respectively; the volume fractions (v¢
and v.) are 0.223 and 0.777 for fine and coarse mode, respectively; the mean radii (u¢ and pu.) are 0.1165 pm and 2.8329 pm for fine
and coarse mode, respectively (Choudhury and Tesche, 2023a).

330 The current Version 4 CALIOP retrievals rely on globally constant, aerosol-type-specific lidar ratios that are directly linked
to fixed, associated normalized PSDs (Kim et al., 2018). Therefore, incorporating the aforementioned variations into a CCNC-
retrieval algorithm for CALIOP is challenging, since these normalized PSDs can only be scaled, without modifying their shape
or the coarse-to-fine particle number ratios. This emphasizes the need for in-situ and remote sensing campaigns measuring
dust aerosols across different regions (Ansmann et al., 2009; Ryder et al., 2013, 2018; Weinzierl et al., 2009, 2017; Haarig et

335 al., 2017). Recent measurements from the past 15 years have not been incorporated into the CALIPSO aerosol model (Omar
et al., 2009), underscoring the regional complexity of dust aerosols and suggesting that coarse-mode dust particles may be
underestimated in the current model (Ansmann et al., 2017; Kok et al., 2021; Adebiyi et al., 2023; Ratcliffe et al., 2024). This
conclusion is consistent with the results shown in Figure 8, suggesting an underestimation of the coarse-to-fine dust particle
number ratio. The upcoming Version 5 CALIOP data product is expected to include regionally varying lidar ratios in its aerosol-

340  retrieval algorithm (Haarig et al., 2025), which will improve the accuracy of the Level-2 dust extinction coefficient, an essential
input for dust CCNC retrieval. However, our results also highlight the importance of accounting for regional variations in the
microphysical properties of dust (and other aerosol types) when updating OMCAM or developing other future algorithms that
are used for global CCNC retrieval from spaceborne lidar measurements. Considering such regional variations in dust

microphysics is crucial for the broader applications of spaceborne lidar-derived height-resolved CCNC datasets in ACI studies.

345 5.  Summary and conclusions

Obtaining the global height-resolved distribution of CCNC and INPC from lidar observations marks a promising pathway
for ACI studies. However, the POLIPHON method requires aerosol-type-specific and regional varying conversion factors for
transforming optical parameters from lidar measurements into cloud-relevant aerosol concentrations.

Here, we extend our earlier work to obtain an extended dataset of 532-nm dust-related conversion factors at 198 AERONET

350 sites. This includes mass- and INP-relevant conversion factors at 137 sites and CCN-relevant conversion factors at 123 sites.

12
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The geographical distribution of these sites ensures that major deserts and routes of dust transport are now represented by
corresponding conversion factors. We find regional variations in dust-related conversion factors that suggest changes in dust
microphysical properties along the transport pathways of dust plumes. For instance, differences in the gravitational settling of
fine and coarse dust modulate the shape of the PSD during the transport. Moreover, the varying levels of mixing with other

355 aerosols might contribute to regional variations of the conversion factors since our relaxed criterion for identifying dust
presence may lead to the inclusion of non-dust particles. In general, c, 4 tends to decrease with greater distance from dust
sources. In contrast, ¢;50,4, Cs 4, and Cg 100,q are found to be larger downstream of desert regions. The CCN-relevant conversion
factors ¢;99q and xq show site-to-site variations without a clear regional pattern, because they are more sensitive to the
contribution of local fine-mode particles. Overall, our findings highlight the importance of considering geographic variations

360 in dust-related conversion factors for inferring dust-related particle concentrations from lidar observations.

Note that compiling a gridded dust conversion factor dataset is challenging, although such a data set would be highly useful
for future studies of global ACI. This arises from the limited number of available sites relative to global coverage, as well as
their inhomogeneous geographical distribution. We recommend using values from the nearest available site when applying the
current conversion factor dataset.

365 To test the performance of the derived conversion factors, we conduct a comparison of CALIOP-based dust-related CCNC
profiles by applying the POLIPHON and OMCAM methods to data collected at 12 AERONET sites. We generally find
agreement within an order of magnitude, which is acceptable given the respective retrieval uncertainties (Choudhury and
Tesche, 2023a; Ansmann et al., 2019a). It is most likely that site-to-site variations in dust microphysical properties contribute
to these differences. OMCAM employs a single fixed dust PSD from the CALIPSO aerosol model, while POLIPHON uses

370 climatology-based conversion factors that account for regional variations in dust PSD. The most notable difference is that the
PSDs of the identified dust data in this study show much higher coarse-to-fine dust particle number ratios compared to the
fixed dust PSD used by CALIPSO. This difference contributes to a much higher number concentration of fine particles for
OMCAM to reconstruct a similar particle extinction coefficient, and finally leads to higher dust CCNC values compared with
POLIPHON. As a consequence, discrepancies in CCNC profiles between the two methods partly reflect the inadequate

375 representativeness of the CALIPSO-model-defined dust PSD at different locations. It is a trade-off for the current version of
OMCAM to use the globally fixed, aerosol-type-specific PSDs to retrieve a reasonably accurate CCNC dataset, given the
limitations of the current Version 4 CALIOP retrievals. Nevertheless, additional in situ measurements will be essential in the
future to validate the capability of both POLIPHON and OMCAM in retrieving global dust CCNC climatology. Therefore,
further efforts are needed in incorporating regional-dependent microphysics of dust (and other aerosol types) to improve the

380 OMCAM algorithm, for its broader applicability to ACI studies on a global scale.

We have tested the conversion factors by comparing the derived CCNC profiles with CCNC profiles generated by OMCAM
retrievals. In the future, it is also necessary to validate the conversion factor dataset by comparing the retrieved CCNC and
INPC (or INP-relevant parameters such as n,sq 4 and s4) profiles with other independent, co-located, and simultaneous data,
from either model outputs (Chatziparaschos et al., 2024; Herbert et al., 2025), in situ measurements (Haarig et al., 2019;

385 Marinou et al., 2019; Kezoudi et al., 2021; Lenhardt et al., 2023), or airborne lidar measurements (Miiller et al., 2014).
Furthermore, the newly launched EarthCARE ATLID (Atmospheric LIDar) spaceborne lidar also requires conversion factors
at 355 nm (Wehr et al., 2023), which can also be calculated with our method. Given the increasing use of ceilometers, extending
the conversion factor dataset to a wavelength of 910 nm is also of interest. In addition to dust, conversion factors for other
aerosol types (e.g., smoke, volcanic aerosol, sea spray aerosol, anthropogenic aerosol, and so on), as well as their regional-

390  variation features should also be estimated to further extend the applicability of the POLIPHON method in estimating height-
resolved CCNC, which is a key parameter to improve our understanding of ACI (Tan et al., 2014; Ansmann et al., 2021;
Cordoba et al., 2021).

13
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